氮化镓的材料应用

2024-05-18 17:11

1. 氮化镓的材料应用

 GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批量生产阶段,从而填补了市场上蓝色LED多年的空白。以发光效率为标志的LED发展历程见图3。蓝色发光器件在高密度光盘的信息存取、全光显示、激光打印机等领域有着巨大的应用市场。随着对Ⅲ族氮化物材料和器件研究与开发工作的不断深入,GaInN超高度蓝光、绿光LED技术已经实现商品化,现在世界各大公司和研究机构都纷纷投入巨资加入到开发蓝光LED的竞争行列。1993年,Nichia公司首先研制成发光亮度超过lcd的高亮度GaInN/AlGaN异质结蓝光LED,使用掺Zn的GaInN作为有源层,外量子效率达到2.7%,峰值波长450nm,并实现产品的商品化。1995年,该公司又推出了光输出功率为2.0mW,亮度为6cd商品化GaN绿光 LED产品,其峰值波长为525nm,半峰宽为40nm。最近,该公司利用其蓝光LED和磷光技术,又推出了白光固体发光器件产品,其色温为6500K,效率达7.5流明/W。除Nichia公司以外,HP、Cree等公司相继推出了各自的高亮度蓝光LED产品。高亮度LED的市场预计将从1998年的 3.86亿美元跃升为2003年的10亿美元。高亮度LED的应用主要包括汽车照明,交通信号和室外路标,平板金色显示,高密度DVD存储,蓝绿光对潜通信等。在成功开发Ⅲ族氮化物蓝光LED之后,研究的重点开始转向Ⅲ族氮化物蓝光LED器件的开发。蓝光LED在光控测和信息的高密度光存储等领域具有广阔的应用前景。目前Nichia公司在GaN蓝光LED领域居世界领先地位,其GaN蓝光LED室温下2mW连续工作的寿命突破10000小时。HP公司以蓝宝石为衬底,研制成功光脊波导折射率导引GaInN/AlGaN多量子阱蓝光LED。Cree公司和Fujitsu公司采用SiC作为衬底材料,开发Ⅲ 族氮化物蓝光LED,CreeResearch公司首家报道了SiC上制作的CWRT蓝光激光器,该激光器彩霞的是横向器件结构。富士通继Nichia,CreeResearch和索尼等公司之后,宣布研制成了InGaN蓝光激光器,该激光器可在室温下CW应用,其结构是在SiC衬底上生长的,并且采用了垂直传导结构(P型和n型接触分别制作在晶片的顶面和背面),这是首次报道的垂直器件结构的CW蓝光激光器。在探测器方面,已研制出GaN紫外探测器,波长为369nm,其响应速度与Si探测器不相上下。但这方面的研究还处于起步阶段。GaN探测器将在火焰探测、导弹预警等方面有重要应用。 对于GaN材料,长期以来由于衬底单晶没有解决,异质外延缺陷密度相当高,但是器件水平已可实用化。1994年日亚化学所制成1200mcd的 LED,1995年又制成Zcd蓝光(450nmLED),绿光12cd(520nmLED);日本1998年制定一个采用宽禁带氮化物材料开发LED的 7年规划,其目标是到2005年研制密封在荧光管内、并能发出白色光的高能量紫外光LED,这种白色LED的功耗仅为白炽灯的1/8,是荧光灯的1/2, 其寿命是传统荧光灯的50倍~100倍。这证明GaN材料的研制工作已取相当成功,并进入了实用化阶段。InGaN系合金的生成,InGaN/AlGaN 双质结LED,InGaN单量子阱LED,InGaN多量子阱LED等相继开发成功。InGaNSQWLED6cd高亮度纯绿茶色、2cd高亮度蓝色 LED已制作出来,今后,与AlGaP、AlGaAs系红色LED组合形成亮亮度全色显示就可实现。这样三原色混成的白色光光源也打开新的应用领域,以高可靠、长寿命LED为特征的时代就会到来。日光灯和电灯泡都将会被LED所替代。LED将成为主导产品,GaN晶体管也将随材料生长和器件工艺的发展而迅猛发展,成为新一代高温度频大功率器件。

氮化镓的材料应用

2. 相比碳化硅基氮化镓及砷化镓,硅基氮化镓半导体材料前景如何?

硅基氮化镓半导体材料相比碳化硅基氮化镓及砷化镓,在实际案例中,目前还没有被广泛应用,但是因为性能优异,所以以后有望普及。
例如相比碳化硅基的氮化镓,硅基的氮化镓比碳化硅基的氮化镓在线性度上有不同的显现,可对基站的复杂信号进行数字调制。
在产能上,碳化硅基由于材料特性,不支持大的晶圆,而硅基氮化镓材料支持大晶圆的特性,有利于电路的扩展和集成,未来有可能在相关领域取代碳化硅基。
另外相比砷化镓,氮化镓拥有高一些的饱和功率,所以当作低噪声放大器使用时,适合雷达等应用领域,可以省略掉限幅器,限幅器的主要作用就是防止高功率干扰信号对放大器带来损失。所以简化的系统噪声系数会好于砷化镓,除此之外混频器等应用中,更好的动态范围也比砷化镓合适。
综合以上所述,从某些方面来说,硅基氮化镓半导体材料有一定优异性,未来有望被广泛应用。

3. 氮化镓的材料特性


氮化镓的材料特性

4. 黑科技最近超火的氮化镓到底是什么黑科技?


5. 氮化镓元件来袭,国内半导体企业却有心无力?

随着氮化镓(GaN)不断应用在二极管、场效电晶体(MOSFET)等元件上,不少业内专家直言,电力电子产业即将迎来技术的大革命。氮化镓虽然在成本上仍比传统硅元件高出一大截,但其开关速度、切换损失等性能指标,也是硅元件难以望其项背的。特别是近年来随着氮化镓广泛被应用于手机快充、电源以及5G市场,氮化镓即将引领半导体技术革命的呼声越来越高。

有望于手机快充、5G市场起飞
当下,氮化镓的主要应用市场是手机快充、电源产业。近年来手机快充技术不断发展,已成为智能手机标配,而促进其普及的重要推手便是氮化镓组件。德州仪器(TI)电源管理应用经理萧进皇曾表示:“氮化镓材料具有低Qg、Qoss与零Qrr的特性,能为高频电源设计带来效率提升、体积缩小与提升功率密度的优势,因此在服务器、通讯电源及便携设备充电器等领域受到市场相当不错的回响,应用需求也越来越多。”
为了缩短电池充电时间,缩小快充装置,充电器制造商必须改用氮化镓组件来实现产品设计。据了解,氮化镓制程已经吸引台积电等晶圆代工业者投入。戴乐格(Dialog)便是与台积电合作,利用台积电标准化的650V硅上氮化镓(GaN-On-Silicon)制程技术,针对消费性市场推出可大规模量产的解决方案。
此外,无线电通信也非常需要高性能的氮化镓半导体组件。在去年年底举行的MACOM媒体见面会上,MACOM无线产品中心资深总监成钢曾表示,MACOM推出的第四代的氮化镓产品峰值效率达到70%,即是说如果让中国现在所用的4G基站均采用氮化镓而不是传统的LDMOS,按照6毛钱一度电,7x24小时运营来计算,其可为运营商一年节省23亿元电费,如果是效率更低的2G、3G成本将节约更多。
而对于正在落实中的5G通信,氮化镓技术同样起到了极大的推动作用。5G移动通信将从人与人通信拓展到万物互联,预计2025年全球将产生1000亿的连接,需求成长能力十分可观。但显然5G技术的门槛相对更高,不仅需要超带宽,更需要高速接入,低接入时延,低功耗和高可靠性以支持海量设备的互联。而氮化镓器件拥有更高的功率密度、更高效率和更低功耗,刚好能够满足5G通信对于半导体元器件性能的要求。
国企有心无力?急需建立氮化镓产业链
氮化镓作为新一代元件,国内外企业都在积极布局。虽然早在2000年我国便开始了以氮化镓和碳化硅为代表的宽禁带半导体电力电子器件的研发工作。但我国氮化镓核心材料、器件原始创新能力仍相对薄弱,目前氮化镓方面的核心技术主要集中在国外企业手上。
目前国内在只有极少数的公司在氮化镓有深入的研究,更别说具备氮化镓晶片生产能力,其中华为、中兴等巨头都是选择通过与MACOM形成战略合作伙伴关系,并且只是将硅基氮化镓产品应用于打造基站方面。相对于氮化镓的巨大潜力,国内企业似乎陷入了有心无力的僵局。
作为国内乃至全球为数不多的具备氮化镓晶片生产能力的公司,苏州纳维科技总经理徐科认为氮化镓的未来市场是一个数万亿美元的市场,但也指出国内更需要的是建立氮化镓产业链,发展氮化镓的产业链——在整个产业链中,国内在氮化镓基底的器件研发和生产上仍然面临断层。
总的来说,在手机快充的需求带动与5G通信的落实效应下,氮化镓组件的市场前景十分广阔,相信经济规模很快就会出现。在这个机遇时刻,企业要加快布局,不仅要加强研发,推出相关氮化镓组件产品,更要对重要应用市场——手机快充、5G通信、电源等加大投资力度,建立起产业链,同时形成以氮化镓为依靠的半导体产业体系。
本文出自大比特资讯,转载请注明来源

氮化镓元件来袭,国内半导体企业却有心无力?

6. 氮化镓的介绍

这是一种具有较大禁带宽度的半导体,属于所谓宽禁带半导体之列。它是微波功率晶体管的优良材料,也是蓝色光发光器件中的一种具有重要应用价值的半导体。

7. 氮化镓有哪些特点?可以制造哪些器件?

氮化镓有哪些特点?
氮化镓号称第三代半导体核心材料。相对硅而言,氮化镓拥有更宽的带隙,宽带隙也意味着,氮化镓能比硅承受更高的电压,拥有更好的导电能力。简而言之两种材料在相同体积下,氮化镓比硅的效率高出不少。如果氮化镓替换现在所有电子设备,可能会让电子产品的用电量再减少10%或者25%。

可以制造哪些器件?
太远离生活的产品不说,采用氮化镓为材料基础做出的充电器,能够实现更好的功率,带来更小的体积。早期的氮化镓材料被运用到通信、军工领域,随着技术的进步以及人们的需求,氮化镓产品已经走进了我们生活中,在充电器中的应用也逐步布局开来。

氮化镓是目前全球最快功率开关器件之一,并且可以在高速开关的情况下仍保持高效率水平,能够应用于更小的变压器,让充电器可以有效缩小产品尺寸。比如导入USB PD快充参考设计,使目前常见的45W适配器设计可以采用30W或更小的外形设计。

氮化镓有哪些特点?可以制造哪些器件?

8. 我国氮化镓生产巨头

国内有多家氮化镓龙头企业,各自有主打产品,并没有某一个企业垄断了一种化工原料的现象出现。下面梳理一下国内比较知名的氮化镓企业。
一、三安光电
化合物半导体代工,已完成部分GaN的产线布局,是氮化镓的龙头。三安光电主要从事全色系超高亮度LED外延片、芯片、Ⅲ-Ⅴ族化合物半导体材料、微波通讯集成电路与功率器件、光通讯元器件等的研发、生产与销售,产品性能指标居国际先进水平。
二、闻泰科技
其安世入股的Transphorm获得了车规级认证,车载GaN已经量产,全球最优质的氮化镓供应商之一。
公司主营通讯和半导体两大业务板块,目前已经形成从芯片设计、晶圆制造、半导体封装测试到产业物联网、通讯终端、笔记本电脑、IoT、汽车电子产品研发制造于一体的庞大产业布局。通讯业务板块包括手机、平板、笔电、IoT、汽车电子等领域。
三、耐威科技
公司目前的第三代半导体业务主要是指GaN(氮化镓)材料的生长与器件的设计,公司已成功研制8英寸硅基氮化镓外延晶圆,且正在持续研发氮化镓器件。
北京耐威科技股份有限公司以传感技术为核心,紧密围绕物联网、特种电子两大产业链,一方面大力发展MEMS、导航、航空电子三大核心业务,一方面积极布局无人系统、第三代半导体材料和器件等潜力业务,致力于成为具备高竞争门槛的一流民营科技企业集团。
公司主要产品及业务包括MEMS芯片的工艺开发及晶圆制造、导航系统及器件、航空电子系统等,应用领域包括通信、生物医疗、工业科学、消费电子、航空航天、智能交通等。
公司业务遍及全球,客户包括特种电子用户以及全球DNA/RNA测序仪巨头、新型超声设备巨头、网络通信和应用巨头以及工业和消费细分行业的领先企业。
四、南大光电
公司的高纯磷烷、砷烷研发和产业化项目已经列入国家科技重大专项。高纯磷烷和高纯砷烷都是LED、超大规模集成电路、砷化镓太阳能电池的重要原材料。
MO源是MOCVD技术生长化合物半导体超薄型膜材料的支撑材料。化合物半导体主要用于制造高亮度发光管、高迁移率晶体管、半导体激光器、太阳能电池等器件,在红外探测、超高速计算机等方面的应用也有着光明的前景。
五、海陆重工
旗下江苏能华微电子科技发展有限公有专业研发、生产以氮化镓( GaN)为代表的复合半导体高性能晶圆,并用其做成功率器件。
苏州海陆重工股份有限公司位于江苏省张家港市开发区,是国内一流的节能环保设备的专业设计制造企业,目前并已初步形成锅炉产品、大型压力容器、核电设备、低温产品、环保工程共同发展的业务格局。

扩展资料一、氮化镓在新型电子器件中的应用
GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。
用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件。
调制掺杂的AlGaN/GaN结构具有高的电子迁移率(2000cm2/v·s)、高的饱和速度(1×107cm/s)、较低的介电常数,是制作微波器件的优先材料;GaN较宽的禁带宽度(3.4eV) 及蓝宝石等材料作衬底,散热性能好,有利于器件在大功率条件下工作。
二、氮化镓在光电器件中的应用
GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。
目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批量生产阶段,从而填补了市场上蓝色LED多年的空白。以发光效率为标志的LED发展历程见图3。
蓝色发光器件在高密度光盘的信息存取、全光显示、激光打印机等领域有着巨大的应用市场。随着对Ⅲ族氮化物材料和器件研究与开发工作的不断深入,GaInN超高度蓝光、绿光LED技术已经实现商品化,现在世界各大公司和研究机构都纷纷投入巨资加入到开发蓝光LED的竞争行列。
最新文章
热门文章
推荐阅读