不同的基因含有不同的密码子

2024-05-06 18:35

1. 不同的基因含有不同的密码子

基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段.
  mRNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸,称为密码子.
  两者定义..
  第二小题
  首先是双链,所以相当于40个不同的碱基
  然后,从第一个开始都可以是ATCG中的任何一个
  也就是4*4*4*4……*4 共有40个4相乘
  也就是C - -
  谢

不同的基因含有不同的密码子

2. 什么是基因密码?

人体里各种组织的每一个细胞都有一套基因密码。基因密码储存在细胞核里的脱氧核糖核酸(简称DNA)的分子中。基因密码通过(转录)合成出核糖核酸(简称RNA〕,RBA再合成出蛋白质,所合成出的蛋白质可以是催化细胞里新陈代谢过程的酶类,或是多肽激素等具有生理活性的蛋白质,从而由这些活性蛋白质进一步调控细胞的生命活动过程,以上所说的遗传信息表达过程,被称之为“中心法则”。 
         基因密码是以三联体形式存在于DNA分子中,以DNA为子中相邻的三个碱基代表一个密码子。碱是一共有四种,它们是腺嘌呤,乌漂呤。胞嘧啶和胸腺嘧啶,用英文字母A、G、C和T来表示。任何三个碱基相邻排列在DNA分子中,就形成一个三联体密码,一系列的三联体密码构成基因密码。每一个三联体密码都具有一定意义,有的代表转录的起始,有的代表转录的终止,但是大多数三联体密码分别代表一种氨基酸的密码。所以说,在DNA分子中有序排列的三联体密码子形成的基因密码,是人类进化过程中,长期积累的生命活动进化的信息结晶。

3. 什么是基因密码?

人体里各种组织的每一个细胞都有一套基因密码。基因密码储存在细胞核里的脱氧核糖核酸(简称DNA)的分子中。基因密码通过(转录)合成出核糖核酸(简称RNA〕,RBA再合成出蛋白质,所合成出的蛋白质可以是催化细胞里新陈代谢过程的酶类,或是多肽激素等具有生理活性的蛋白质,从而由这些活性蛋白质进一步调控细胞的生命活动过程,以上所说的遗传信息表达过程,被称之为“中心法则”。
基因密码是以三联体形式存在于DNA分子中,以DNA为子中相邻的三个碱基代表一个密码子。碱是一共有四种,它们是腺嘌呤,乌漂呤。胞嘧啶和胸腺嘧啶,用英文字母A、G、C和T来表示。任何三个碱基相邻排列在DNA分子中,就形成一个三联体密码,一系列的三联体密码构成基因密码。每一个三联体密码都具有一定意义,有的代表转录的起始,有的代表转录的终止,但是大多数三联体密码分别代表一种氨基酸的密码。所以说,在DNA分子中有序排列的三联体密码子形成的基因密码,是人类进化过程中,长期积累的生命活动进化的信息结晶。

什么是基因密码?

4. 什么是基因密码

人体里各种组织的每一个细胞都有一套基因密码。基因密码储存在细胞核里的脱氧核糖核酸(简称DNA)的分子中。基因密码通过(转录)合成出核糖核酸(简称RNA〕,RBA再合成出蛋白质,所合成出的蛋白质可以是催化细胞里新陈代谢过程的酶类,或是多肽激素等具有生理活性的蛋白质,从而由这些活性蛋白质进一步调控细胞的生命活动过程,以上所说的遗传信息表达过程,被称之为“中心法则”。 
基因密码是以三联体形式存在于DNA分子中,以DNA为子中相邻的三个碱基代表一个密码子。碱是一共有四种,它们是腺嘌呤,乌漂呤。胞嘧啶和胸腺嘧啶,用英文字母A、G、C和T来表示。任何三个碱基相邻排列在DNA分子中,就形成一个三联体密码,一系列的三联体密码构成基因密码。每一个三联体密码都具有一定意义,有的代表转录的起始,有的代表转录的终止,但是大多数三联体密码分别代表一种氨基酸的密码。所以说,在DNA分子中有序排列的三联体密码子形成的基因密码,是人类进化过程中,长期积累的生命活动进化的信息结晶。
基因(遗传因子)是遗传的物质基础,是DNA或RNA分子上具有遗传信息的特定核苷酸序列。基因通过复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。人类大约有几万个基因,储存着生命孕育、生长、凋亡过程的全部信息,通过复制、表达、修复,完成生命繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、病、老、死等一切生命现象都与基因有关。它也是决定人体健康的内在因素。

5. 不同物种的基因密码子有什么差异?

由于密码子的简并性,每个氨基酸至少对应1种密码子,最多有6种对应的密码子。不同物种、不同生物体的基因密码子使用存在着很大的差异。各种生物体似乎更偏爱使用某些同义三联密码子(即编码相同氨基酸的密码子)。在一些单细胞生物如Escherichiacoli、Saccharomycescerevisiae中,高表达的基因密码子的使用偏性一般比较大。这些偏好可能与两个原因有关:一是避免使用类似终止密码子的密码子;二是这些偏好能够有效地翻译密码子,因为这些密码子对应于生物体中非常丰富的tRNA。无论导致这种偏好的原因到底是什么,不同生物的密码子使用偏性的差异可以非常大。真实的外显子一般能反映出这些偏好,而随机选择的三联体序列却不能。

不同物种的基因密码子有什么差异?

6. 遗传密码是基因吗?二者有什么关系?

遗传密码决定蛋白质中氨基酸顺序的核苷酸顺序,由3个连续的核苷酸组成的密码子所构成,很多个遗传密码构成一个基因。
密码子在mRNA上,反密码子在tRNA上。
密码子在蛋白质合成时,代表某一种氨基酸的规律;反密码子是在tRNA的三叶草形二级结构反密码臂的中部,可与mRNA中的三联体密码子形成碱基配对的三个相邻碱基。在蛋白质的合成中,起解读密码、将特异的氨基酸引入核糖体A和P位点的作用。

扩展资料:
遗传密码的基本特性:
1、方向性
密码子是对mRNA分子的碱基序列而言的,它的阅读方向是与mRNA的合成方向或mRNA编码方向一致的,即从5'端至3'端。
2、连续性
mRNA的读码方向从5'端至3'端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插入、缺失和重叠,均造成框移突变。
3、简并性
指一个氨基酸具有两个或两个以上的密码子。密码子的第三位碱基改变往往不影响氨基酸翻译。
参考资料来源:百度百科-密码子

7. 什么是基因密码?


什么是基因密码?

8. 密码子和遗传密码的区别

遗传密码是由64个密码子组成的,所以在本质上密码子和遗传密码没有区别。
1、遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。密码子具有通用性,不同的生物密码子基本相同,即共用一套密码子。
2、、 遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。
3、 密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。

扩展资料:
应用:

提高基因的异源表达
可通过分析密码子使用模式,预测目的基因的最佳宿主;或者应用基因工程手段,为目的基因表达提供最优的密码子使用模式。3种不同的方式,目的都是利用密码子偏性来提高异源基因的表达。

翻译起始效应
mRNA浓度是翻译起始速率的主要影响因素之一,密码子直接影响转录效率,决定mRNA浓度。如单子叶植物在“翻译起始区”的密码子偏性大于“翻译终止区”,暗示“翻译起始区”的密码子使用对提高蛋白翻译的效率和精确性更为重要,因此,通过修饰编码区5′端的DNA序列,来提高蛋白质的表达水平将有望成为可能。

影响蛋白质的结构与功能
基因的密码子偏性与所编码蛋白质结构域的连接区和二级结构单元的连接区有关、翻译速率在连接区会降低。马建民等通过聚类分析的方法研究发现,哺乳动物MHC基因的密码子偏性与所编码蛋白质的三级结构密切相关,并可通过影响mRNA不同区域的翻译速度,来改变编码蛋白质的空间构象。其研究所选取的蛋白结构单位是蛋白指纹,它在很大程度上也是一种蛋白功能单位,表明密码子偏性与蛋白的功能也存在密切相关。改变密码子使用模式可目的性改变特定蛋白质的结构与功能。

基因定位功能
密码子的使用模式在细胞核和细胞质遗传物质之间也存在差异,如核基因中的起始密码子只有ATG,而线粒体基因中的起始密码子为ATN;核基因中的终止密码子TGA在线粒体基因中用来编码色氨酸等。因此,可以通过比较密码子的使用模式,来进行真核生物核糖体在细胞内以及未知蛋白基因在基因组的定位。

预测进化规律
类似的密码子使用模式,预示着物种相近的亲缘关系或生存环境。目前已有研究通过比较密码子偏性的差异程度,来分析物种间的亲缘关系和进化历程。线粒体基因组具有母系遗传、分子结构简单、多态性丰富等优点,是一种重要的分子标记,研究其密码子使用偏好性,可以很好地用于确定动物类群的遗传分化和系统发生关系。
参考资料:百度百科-密码子