数据挖掘要解决的问题有哪些?

2024-05-18 09:05

1. 数据挖掘要解决的问题有哪些?

1.可伸缩由于数据产生和采集技术的进步,数太字节(TB)、数拍字节(PB)甚至数艾字节(EB)的数据集越来越普遍。如果数据挖掘算法要处理这些海量数据集,则算法必须是可伸缩的。许多数据挖掘算法采用特殊的搜索策略来处理指数级的搜索问题。为实现可伸缩可能还需要实现新的数据结构,才能以有效的方式访问每个记录。
例如,当要处理的数据不能放进内存时,可能需要核外算法。使用抽样技术或开发并行和分布式算法也可以提高可伸缩程度。
2.高维性
现在,常常会遇到具有成百上千属性的数据集,而不是几十年前常见的只具有少量属性的数据集。在生物信息学领域,微阵列技术的进步已经产生了涉及数千特征的基因表达数据。具有时间分量或空间分量的数据集也通常具有很高的维度。
例如,考虑包含不同地区的温度测量结果的数据集,如果在一个相当长的时间周期内反复地测量,则维数(特征数)的增长正比于测量的次数。为低维数据开发的传统数据分析技术通常不能很好地处理这类高维数据,如维灾难问题。此外,对于某些数据分析算法,随着维数(特征数)的增加,计算复杂度会迅速增加。
3.异构数据和复杂数据
通常,传统的数据分析方法只处理包含相同类型属性的数据集,或者是连续的,或者是分类的。随着数据挖掘在商务、科学、医学和其他领域的作用越来越大,越来越需要能够处理异构属性的技术。
近年来,出现了更复杂的数据对象。这种非传统类型的数据如:含有文本、超链接、图像、音频和视频的Web和社交媒体数据,具有序列和三维结构的DNA数据,由地球表面不同位置、不同时间的测量值(温度、压力等)构成的气候数据。
为挖掘这种复杂对象而开发的技术应当考虑数据中的联系,如时间和空间的自相关性、图的连通性、半结构化文本和XML文档中元素之间的父子关系。
4.数据的所有权与分布
有时,需要分析的数据不会只存储在一个站点,或归属于一个机构,而是地理上分布在属于多个机构的数据源中。这就需要开发分布式数据挖掘技术。分布式数据挖掘算法面临的主要挑战包括:
如何降低执行分布式计算所需的通信量?如何有效地统一从多个数据源获得的数据挖掘结果?如何解决数据安全和隐私问题?
5.非传统分析
传统的统计方法基于一种假设检验模式,即提出一种假设,设计实验来收集数据,然后针对假设分析数据。但是,这一过程劳力费神。当前的数据分析任务常常需要产生和评估数千种假设,因此需要自动地产生和评估假设,这促使人们开发了一些数据挖掘技术。
此外,数据挖掘所分析的数据集通常不是精心设计的实验的结果,并且它们通常代表数据的时机性样本(opportunistic sample),而不是随机样本(random sample)。

数据挖掘要解决的问题有哪些?

2. 数据挖掘能解决哪些问题?

1、分类问题
分类问题归于猜测性的问题,可是它跟普通猜测问题的差异在于其猜测的结果是类别(如A、B、C三类)而不是一个具体的数值(如55、65、75……)。
举个例子,你和朋友在路上走着,迎面走来一个人,你对朋友说:我猜这个人是个上海人,那么这个问题就归于分类问题;如果你对朋友说:我猜这个人的年龄在30岁左右,那么这个问题就归于后面要提到的猜测问题。
2、聚类问题
聚类问题不归于猜测性的问题,它首要处理的是把一群目标划分红若干个组的问题。划分的依据是聚类问题的中心。所谓“物以类聚,人以群分”,故得名聚类。
聚类问题简单与分类问题混淆,首要是语言表达的原因,因为咱们常说这样的话:“根据客户的消费行为,咱们把客户分红三个类,第一个类的首要特征是……”,实际上这是一个聚类问题,可是在表达上简单让咱们误解为这是个分类问题。
3、相关问题
说起相关问题,可能要从“啤酒和尿布”说起了。有人说啤酒和尿布是沃尔玛超市的一个经典事例,也有人说,是为了宣扬数据发掘/数据仓库而假造出来的虚构的“托”。不管怎么,“啤酒和尿布”给了咱们一个启示:世界上的万事万物都有着千丝万缕的联络,咱们要长于发现这种相关。
4、猜测问题
此处说的猜测问题指的是狭义的猜测,并不包含前面阐述的分类问题,因为分类问题也归于猜测。一般来说咱们谈猜测问题首要指猜测变量的取值为连续数值型的状况。
例如天气预报猜测明天的气温、国家猜测下一年度的GDP增长率、电信运营商猜测下一年的收入、用户数等?
关于数据挖掘能解决哪些问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

3. 求问什么是数据挖掘

数据挖掘相关的10个问题 NO.1 Data Mining 和统计分析有什么不同? 硬要去区分Data Mining和Statistics的差异其实是没有太大意义的。一般将之定义为Data Mining技术的CART、CHAID或模糊计算等等理论方法,也都是由统计学者根据统计理论所发展衍生,换另一个角度看,Data Mining有相当大的比重是由高等统计学中的多变量分析所支撑。但是为什么Data Mining的出现会引发各领域的广泛注意呢?主要原因在相较于传统统计分析而言,Data Mining有下列几项特性: 1.处理大量实际数据更强势,且无须太专业的统计背景去使用Data Mining的工具; 2.数据分析趋势为从大型数据库抓取所需数据并使用专属计算机分析软件,Data Mining的工具更符合企业需求; 3. 纯就理论的基础点来看,Data Mining和统计分析有应用上的差别,毕竟Data Mining目的是方便企业终端用户使用而非给统计学家检测用的。 NO.2 Data Warehousing 和 Data Mining 的关系为何? 若将Data Warehousing(数据仓库)比喻作矿坑,Data Mining就是深入矿坑采矿的工作。毕竟Data Mining不是一种无中生有的魔术,也不是点石成金的炼金术,若没有够丰富完整的数据,是很难期待Data Mining能挖掘出什么有意义的信息的。 要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统(Design Support System)所需的数据,供决策支持或数据分析使用。从信息技术的角度来看,数据仓库的目标是在组织中,在正确的时间,将正确的数据交给正确的人。 许多人对于Data Warehousing和Data Mining时常混淆,不知如何分辨。其实,数据仓库是数据库技术的一个新主题,利用计算机系统帮助我们操作、计算和思考,让作业方式改变,决策方式也跟着改变。 数据仓库本身是一个非常大的数据库,它储存着由组织作业数据库中整合而来的数据,特别是指事务处理系统OLTP(On-Line Transactional Processing)所得来的数据。将这些整合过的数据置放于数据昂哭中,而公司的决策者则利用这些数据作决策;但是,这个转换及整合数据的过程,是建立一个数据仓库最大的挑战。因为将作业中的数据转换成有用的的策略性信息是整个数据仓库的重点。综上所述,数据仓库应该具有这些数据:整合性数据(integrated data)、详细和汇总性的数据(detailed and summarized data)、历史数据、解释数据的数据。从数据仓库挖掘出对决策有用的信息与知识,是建立数据仓库与使用Data Mining的最大目的,两者的本质与过程是两回事。换句话说,数据仓库应先行建立完成,Data mining才能有效率的进行,因为数据仓库本身所含数据是干净(不会有错误的数据参杂其中)、完备,且经过整合的。因此两者关系或许可解读为Data Mining是从巨大数据仓库中找出有用信息的一种过程与技术。 NO.3 OLAP 能不能代替 Data Mining? 所谓OLAP(Online Analytical Process)意指由数据库所连结出来的在线分析处理程序。有些人会说:「我已经有OLAP的工具了,所以我不需要Data Mining。」事实上两者间是截然不同的,主要差异在于Data Mining用在产生假设,OLAP则用于查证假设。简单来说,OLAP是由使用者所主导,使用者先有一些假设,然后利用OLAP来查证假设是否成立;而Data Mining则是用来帮助使用者产生假设。所以在使用OLAP或其它Query的工具时,使用者是自己在做探索(Exploration),但Data Mining是用工具在帮助做探索。 举个例子来看,一市场分析师在为超市规划货品架柜摆设时,可能会先假设婴儿尿布和婴儿奶粉会是常被一起购买的产品,接着便可利用OLAP的工具去验证此假设是否为真,又成立的证据有多明显;但Data Mining则不然,执行Data Mining的人将庞大的结帐数据整理后,并不需要假设或期待可能的结果,透过Mining技术可找出存在于数据中的潜在规则,于是我们可能得到例如尿布和啤酒常被同时购买的意料外之发现,这是OLAP所做不到的。 Data Mining常能挖掘出超越归纳范围的关系,但OLAP仅能利用人工查询及可视化的报表来确认某些关系,是以Data Mining此种自动找出甚至不会被怀疑过的数据模型与关系的特性,事实上已超越了我们经验、教育、想象力的限制,OLAP可以和Data Mining互补,但这项特性是Data Mining无法被OLAP取代的。 NO.4 完整的Data Mining 包含哪些步骤? 以下提供一个Data Mining的进行步骤以为参考: 1. 理解业务与理解数据; 2. 获取相关技术与知识; 3. 整合与查询数据; 4. 去除错误或不一致及不完整的数据; 5. 由数据选取样本先行试验; 6. 建立数据模型 7. 实际Data Mining的分析工作; 8. 测试与检验; 9. 找出假设并提出解释; 10. 持续应用于企业流程中。 由上述步骤可看出,Data Mining牵涉了大量的准备工作与规划过程,事实上许多专家皆认为整套Data Mining的进行有80﹪的时间精力是花费在数据前置作业阶段,其中包含数据的净化与格式转换甚或表格的连结。由此可知Data Mining只是信息挖掘过程中的一个步骤而已,在进行此步骤前还有许多的工作要先完成。 NO.5 Data Mining 运用了哪些理论与技术? Data Mining是近年来数据库应用技术中相当热门的议题,看似神奇、听来时髦,实际上却也不是什么新东西,因其所用之诸如预测模型、数据分割,连结分析(Link Analysis)、偏差侦测(Deviation Detection)等,美国早在二次世界大战前就已应用运用在人口普查及军事等方面。 随着信息科技超乎想象的进展,许多新的计算机分析工具问世,例如关系型数据库、模糊计算理论、基因算法则以及类神经网络等,使得从数据中发掘宝藏成为一种系统性且可实行的程序。 一般而言,Data Mining的理论技术可分为传统技术与改良技术两支。 传统技术以统计分析为代表,统计学内所含序列统计、概率论、回归分析、类别数据分析等都属于传统数据挖掘技术,尤其 Data Mining 对象多为变量繁多且样本数庞大的数据,是以高等统计学里所含括之多变量分析中用来精简变量的因素分析(Factor Analysis)、用来分类的判别分析(Discriminant Analysis),以及用来区隔群体的分群分析(Cluster Analysis)等,在Data Mining过程中特别常用。 在改良技术方面,应用较普遍的有决策树理论(Decision Trees)、类神经网络(Neural Network)以及规则归纳法(Rules Induction)等。决策树是一种用树枝状展现数据受各变量的影响情形之预测模型,根据对目标变量产生之效应的不同而建构分类的规则,一般多运用在对客户数据的分析上,例如针对有回函与未回含的邮寄对象找出影响其分类结果的变量组合,常用分类方法为CART(Classification and Regression Trees)及CHAID(Chi-Square Automatic Interaction Detector)两种。 类神经网络是一种仿真人脑思考结构的数据分析模式,由输入之变量与数值中自我学习并根据学习经验所得之知识不断调整参数以期建构数据的型样(patterns)。类神经网络为非线性的设计,与传统回归分析相比,好处是在进行分析时无须限定模式,特别当数据变量间存有交互效应时可自动侦测出;缺点则在于其分析过程为一黑盒子,故常无法以可读之模型格式展现,每阶段的加权与转换亦不明确,是故类神经网络多利用于数据属于高度非线性且带有相当程度的变量交感效应时。 规则归纳法是知识发掘的领域中最常用的格式,这是一种由一连串的「如果…/则…(If / Then)」之逻辑规则对数据进行细分的技术,在实际运用时如何界定规则为有效是最大的问题,通常需先将数据中发生数太少的项目先剔除,以避免产生无意义的逻辑规则。 NO.6 Data Mining包含哪些主要功能? Data Mining实际应用功能可分为三大类六分项来说明:Classification和Clustering属于分类区隔类;Regression和Time-series属于推算预测类;Association和Sequence则属于序列规则类。 Classification是根据一些变量的数值做计算,再依照结果作分类。(计算的结果最后会被分类为几个少数的离散数值,例如将一组数据分为 "可能会响应" 或是 "可能不会响应" 两类)。Classification常被用来处理如前所述之邮寄对象筛选的问题。我们会用一些根据历史经验已经分类好的数据来研究它们的特征,然后再根据这些特征对其他未经分类或是新的数据做预测。这些我们用来寻找特征的已分类数据可能是来自我们的现有的客户数据,或是将一个完整数据库做部份取样,再经由实际的运作来测试;譬如利用一个大型邮寄对象数据库的部份取样来建立一个Classification Model,再利用这个Model来对数据库的其它数据或是新的数据作分类预测。 Clustering用在将数据分群,其目的在于将群间的差异找出来,同时也将群内成员的相似性找出来。Clustering与Classification不同的是,在分析前并不知道会以何种方式或根据来分类。所以必须要配合专业领域知识来解读这些分群的意义。 Regression是使用一系列的现有数值来预测一个连续数值的可能值。若将范围扩大亦可利用Logistic Regression来预测类别变量,特别在广泛运用现代分析技术如类神经网络或决策树理论等分析工具,推估预测的模式已不在止于传统线性的局限,在预测的功能上大大增加了选择工具的弹性与应用范围的广度。 Time-Series Forecasting与Regression功能类似,只是它是用现有的数值来预测未来的数值。两者最大差异在于Time-Series所分析的数值都与时间有关。Time-Series Forecasting的工具可以处理有关时间的一些特性,譬如时间的周期性、阶层性、季节性以及其它的一些特别因素(如过去与未来的关连性)。 Association是要找出在某一事件或是数据中会同时出现的东西。举例而言,如果A是某一事件的一种选择,则B也出现在该事件中的机率有多少。(例如:如果顾客买了火腿和柳橙汁,那么这个顾客同时也会买牛奶的机率是85%。) Sequence Discovery与Association关系很密切,所不同的是Sequence Discovery中事件的相关是以时间因素来作区隔(例如:如果A股票在某一天上涨12%,而且当天股市加权指数下降,则B股票在两天之内上涨的机率是 68%)。 NO.7 Data Mining在各领域的应用情形为何? Data Mining在各领域的应用非常广泛,只要该产业拥有具分析价值与需求的数据仓储或数据库,皆可利用Mining工具进行有目的的挖掘分析。一般较常见的应用案例多发生在零售业、直效行销界、制造业、财务金融保险、通讯业以及医疗服务等。 于销售数据中发掘顾客的消费习性,并可藉由交易纪录找出顾客偏好的产品组合,其它包括找出流失顾客的特征与推出新产品的时机点等等都是零售业常见的实例;直效行销强调的分众概念与数据库行销方式在导入Data Mining的技术后,使直效行销的发展性更为强大,例如利用Data Mining分析顾客群之消费行为与交易纪录,结合基本数据,并依其对品牌价值等级的高低来区隔顾客,进而达到差异化行销的目的;制造业对Data Mining的需求多运用在品质控管方面,由制造过程中找出影响产品品质最重要的因素,以期提高作业流程的效率。 近来电话公司、信用卡公司、保险公司以及股票交易商对于诈欺行为的侦测(Fraud Detection)都很有兴趣,这些行业每年因为诈欺行为而造成的损失都非常可观,Data Mining可以从一些信用不良的客户数据中找出相似特征并预测可能的诈欺交易,达到减少损失的目的。财务金融业可以利用 Data Mining来分析市场动向,并预测个别公司的营运以及股价走向。Data Mining的另一个独特的用法是在医疗业,用来预测手术、用药、诊断、或是流程控制的效率。 NO.8 Web Mining 和Data Mining有什么不同? 如果将Web视为CRM的一个新的Channel,则Web Mining便可单纯看做Data Mining应用在网络数据的泛称。 该如何测量一个网站是否成功?哪些内容、优惠、广告是人气最旺的?主要访客是哪些人?什么原因吸引他们前来?如何从堆积如山之大量由网络所得数据中找出让网站运作更有效率的操作因素?以上种种皆属Web Mining 分析之范畴。Web Mining 不仅只限于一般较为人所知的log file分析,除了计算网页浏览率以及访客人次外,举凡网络上的零售、财务服务、通讯服务、政府机关、医疗咨询、远距教学等等,只要由网络连结出的数据库够大够完整,所有Off-Line可进行的分析,Web Mining都可以做,甚或更可整合Off-Line及On-Line的数据库,实施更大规模的模型预测与推估,毕竟凭借网际网络的便利性与渗透力再配合网络行为的可追踪性与高互动特质,一对一行销的理念是最有机会在网络世界里完全落实的。 整体而言,Web Mining具有以下特性:1. 数据收集容易且不引人注意,所谓凡走过必留下痕迹,当访客进入网站后的一切浏览行为与历程都是可以立即被纪录的;2. 以交互式个人化服务为终极目标,除了因应不同访客呈现专属设计的网页之外,不同的访客也会有不同的服务;3. 可整合外部来源数据让分析功能发挥地更深更广,除了log file、cookies、会员填表数据、线上调查数据、线上交易数据等由网络直接取得的资源外,结合实体世界累积时间更久、范围更广的资源,将使分析的结果更准确也更深入。 利用Data Mining技术建立更深入的访客数据剖析,并赖以架构精准的预测模式,以期呈现真正智能型个人化的网络服务,是Web Mining努力的方向。 NO.9 Data Mining 在 CRM 中扮演的角色为何? CRM(Customer Relationship Management)是近来引起热烈讨论与高度关切的议题,尤其在直效行销的崛起与网络的快速发展带动下,跟不上CRM的脚步如同跟不上时代。事实上CRM并不算新发明,奥美直效行销推动十数年的CO(Customer Ownership)就是现在大家谈的CRM—客户关系管理。 Data Mining应用在CRM的主要方式可对应在Gap Analysis之三个部分: 针对Acquisition Gap,可利用Customer Profiling找出客户的一些共同的特征,希望能藉此深入了解客户,藉由Cluster Analysis对客户进行分群后再透过Pattern Analysis预测哪些人可能成为我们的客户,以帮助行销人员找到正确的行销对象,进而降低成本,也提高行销的成功率。 针对Sales Gap,可利用Basket Analysis帮助了解客户的产品消费模式,找出哪些产品客户最容易一起购买,或是利用Sequence Discovery预测客户在买了某一样产品之后,在多久之内会买另一样产品等等。利用 Data Mining可以更有效的决定产品组合、产品推荐、进货量或库存量,甚或是在店里要如何摆设货品等,同时也可以用来评估促销活动的成效。 针对Retention Gap,可以由原客户后来却转成竞争对手的客户群中,分析其特征,再根据分析结果到现有客户数据中找出可能转向的客户,然后设计一些方法预防客户流失;更有系统的做法是藉由Neural Network根据客户的消费行为与交易纪录对客户忠诚度进行Scoring的排序,如此则可区隔流失率的等级进而配合不同的策略。 CRM不是设一个(080)客服专线就算了,更不仅只是把一堆客户基本数据输入计算机就够,完整的CRM运作机制在相关的硬软件系统能健全的支持之前,有太多的数据准备工作与分析需要推动。

求问什么是数据挖掘

4. 数据挖掘的数据对象存在哪些问题

数据挖掘的数据对象存在哪些问题:数据挖掘是一个动态、强势快速扩展的领域。数据挖掘研究的主要问题,可划分为五组:挖掘方法、用户交互、有效性与可伸缩性、数据类型的多样性、数据挖掘与社会。【摘要】
数据挖掘的数据对象存在哪些问题【提问】
数据挖掘的数据对象存在哪些问题:数据挖掘是一个动态、强势快速扩展的领域。数据挖掘研究的主要问题,可划分为五组:挖掘方法、用户交互、有效性与可伸缩性、数据类型的多样性、数据挖掘与社会。【回答】
本书强调数据挖掘的主要问题,考虑挖掘技术、用户界面、性能和各种数据类型。这些问题介绍如下:数据挖掘技术和用户界面问题:这反映所挖掘的知识类型、在多粒度上挖掘知识的能力、领域知识的使用、特定的挖掘和知识显示。【回答】
数据挖掘的主要问题,考虑挖掘技术、用户界面、性能和各种数据类型。这些问题介绍如下:数据挖掘技术和用户界面问题:这反映所挖掘的知识类型、在多粒度上挖掘知识的能力、领域知识的使用、特定的挖掘和知识显示。【回答】
挖掘各种新的新的知识类型: 数据挖掘广泛涵盖数据分析和知识发现的任务,从数据特征化与区分到关联与相关性分析、分类、回归、聚类、离群点分析、序列分析以及趋势和演变分析。挖掘多维空间中的知识: 我们可能在不同抽象层的多维组合中搜索有趣的模式。这种挖掘称做探索式多维数据挖掘。数据挖掘——跨学科的努力: 通过集成来自多科学的新方法可以显著增强数据挖掘的能力。处理不确定性、噪声或不完全数据: 数据通常包含噪声、错误、异常、不确定性,或者是不完全的。错误和噪声可能干扰数据挖掘过程,导致错误的模式出现。数据清理、数据预处理、离群点检测与删除以及不确定推理都是需要与数据挖掘过程的集成的技术模式评估和模式或约束知道和挖掘: 需要一种技术来评估基于主观度量所发现的模式的兴趣度。【回答】

5. 数据挖掘的数据处理

数据挖掘的数据处理
从数据本身来考虑,数据挖掘通常需要有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘实施过程、模式评估和知识表示8个步骤。
步骤(1)信息收集:根据确定的数据分析对象,抽象出在数据分析中所需要的特征信息,然后选择合适的信息收集方法,将收集到的信息存入数据库。对于海量数据,选择一个合适的数据存储和管理的数据仓库是至关重要的。
步骤(2)数据集成:把不同来源、格式、特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享。
步骤(3)数据规约:如果执行多数的数据挖掘算法,即使是在少量数据上也需要很长的时间,而做商业运营数据挖掘时数据量往往非常大。数据规约技术可以用来得到数据集的规约表示,它小得多,但仍然接近于保持原数据的完整性,并且规约后执行数据挖掘结果与规约前执行结果相同或几乎相同。
步骤(4)数据清理:在数据库中的数据有一些是不完整的(有些感兴趣的属性缺少属性值)、含噪声的(包含错误的属性值),并且是不一致的(同样的信息不同的表示方式),因此需要进行数据清理,将完整、正确、一致的数据信息存入数据仓库中。不然,挖掘的结果会差强人意。
步骤(5)数据变换:通过平滑聚集、数据概化、规范化等方式将数据转换成适用于数据挖掘的形式。对于有些实数型数据,通过概念分层和数据的离散化来转换数据也是重要的一步。
步骤(6)数据挖掘过程:根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。
步骤(7)模式评估:从商业角度,由行业专家来验证数据挖掘结果的正确性。
步骤(8)知识表示:将数据挖掘所得到的分析信息以可视化的方式呈现给用户,或作为新的知识存放在知识库中,供其他应用程序使用。
数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。不是每件数据挖掘的工作都需要这里列出的每一步,例如在某个工作中不存在多个数据源的时候,步骤(2)便可以省略。
步骤(3)数据规约、步骤(4)数据清理、步骤(5)数据变换又合称数据预处理。在数据挖掘中,至少60%的费用可能要花在步骤(1)信息收集阶段,而其中至少60%以上的精力和时间花在了数据预处理过程中。

数据挖掘的数据处理

6. 数据仓库与数据挖掘问题

公众交流平台
  1 介绍
    数据仓库是面向主题的、集成的、与时间相关的、不可修改的数据集合。数据仓库技术是基于信息系统业务发展的需要,基于数据库系统技术发展而来,并逐步独立的一系列新的应用技术。数据仓库系统可以看作是基于数学及统计学严谨逻辑思维的并达成“科学的判断、有效的行为”的一个工具,也是一种达成“数据整合、知识管理”的有效手段。随着数据仓库技术应用的不断深入,越来越多的企业开始使用数据仓库技术建设自己的数据仓库系统,希望能对历史数据进行具体而又有针对性的分析与挖掘,以期从中发现新客户和客户新的需求。
    目前主要的数据仓库产品供应商包括Oracle、IBM、Microsoft、SAS、Teradata、Sybase、Business Objects(已被SAP收购)等。Oracle公司的数据仓库解决方案包含了业界领先的数据库平台、开发工具和应用系统,能够提供一系列的数据仓库工具集和服务,具有多用户数据仓库管理能力,多种分区方式,较强的与OLAP工具的交互能力,及快速和便捷的数据移动机制等特性;IBM公司的数据仓库产品称为DB2 Data Warehouse Edition,它结合了DB2数据服务器的长处和IBM的商业智能基础设施,集成了用于仓库管理、数据转换、数据挖掘以及OLAP分析和报告的核心组件,提供了一套基于可视数据仓库的商业智能解决方案;微软的SQL Server提供了三大服务和一个工具来实现数据仓库系统的整合,为用户提供了可用于构建典型和创新的分析应用程序所需的各种特性、工具和功能,可以实现建模、ETL、建立查询分析或图表、定制KPI、建立报表和构造数据挖掘应用及发布等功能;SAS公司的数据仓库解决方案是一个由30多个专用模块构成的架构体系,适应于对企业级的数据进行重新整合,支持多维、快速查询,提供服务于OLAP操作和决策支持的数据采集、管理、处理和展现功能;Teradata公司提出了可扩展数据仓库基本架构,包括数据装载、数据管理和信息访问几个部分,是高端数据仓库市场最有力竞争者,主要运行在基于Unix操作系统平台的NCR硬件设备上;Sybase提供了称为Warehouse Studio的一整套覆盖整个数据仓库建立周期的产品包,包括数据仓库的建模、数据集成和转换、数据存储和管理、元数据管理和数据可视化分析等产品;Business Objects是集查询、报表和OLAP技术为一身的智能决策支持系统,具有较好的查询和报表功能,提供多维分析技术,支持多种数据库,同时它还支持基于Web浏览器的查询、报表和分析决策。
    根据IDC发布的2006年数据仓库市场分析报告,上述公司占据了全球近90%的市场份额,提供的数据仓库产品的功能特性已经成为市场的主流。这些公司在推出各自的数据仓库产品的同时也提供了相应的数据仓库解决方案。本文后续内容将针对这些数据仓库产品和解决方案的主要支撑技术进行比较,并结合IDC和ChinaBI相关报告给出相应的市场情况分析。
    2 支撑技术
    在数据仓库系列技术中,主要的支撑技术包括数据库技术、ETL技术、OLAP技术、报表技术、数据挖掘技术。
    2.1 数据库技术
    数据库技术是支撑数据仓库技术的基础技术。尽管在数据仓库技术存储模型方面,基于数据库技术而发展的关系模式的理念已经被颠覆,取而代之是各种各样的数据仓库数据模型,如星型模型,雪花模型等。然而,在已有的数据仓库实践中,关系数据库仍然是实质的数据库存储工具,只是将数据库表改称为了事实表和维表,将属性域之间的关系重新定义为维度,量度,层次,粒度等。
    成熟的数据仓库后台数据库包括Oracle、DB2、SQL Server、Teradata和Sybase IQ。在查询效率方面,Sybase IQ由于采用了列存储技术,查询效率比较高;在兼容性方面,Teradata从软件到硬件都必须是专用的,因而兼容性最差;在管理平台和海量数据管理方面,Oracle、DB2和SQL Server都提供了一系列完整的工具,相对于其它产品有着明显的优势;在磁盘空间利用方面,Sybase IQ的压缩比是所有数据库中最好的,而Teradata最为浪费。
    另外,SAS公司和BO公司也拥有自己的数据管理能力,但对于大型数据仓库的数据管理,仍然需要使用上述数据库产品,SAS和BO都提供了与这些数据库进行连接的专门接口。
    2.2 ETL技术
    数据仓库系统是集成的、与时间相关的数据集合,ETL作为数据仓库的核心,负责将分布的、异构数据源中的数据进行抽取、清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。ETL能够按照统一的规则集成并提高数据的价值,是负责完成数据从数据源向目标数据仓库转化的过程,是实施数据仓库的重要步骤。要实现数据仓库中数据的自动更新运转,ETL技术是必不可少的关键技术之一。
    主流数据仓库产品供应商都拥有各自的ETL能力。IBM的ETL工具称为IBM WebSphere DataStage,它为整个ETL过程提供了一个图形化的开发环境,支持对多种操作数据源的数据抽取、转换和维护,并将其输入数据集或数据仓库;Teradata的ETL工具称为ETL Automation,它利用Teradata数据库本身的并行处理能力,通过SQL语句实现数据的转换,提供对ETL流程的支持,包括前后依赖、执行和监控等;SAS的ETL工具称为ETL Studio,提供管理ETL流程和建立数据仓库、数据集市和OLAP结构的单控制点。其他几家公司则将其工具融合在大的数据仓库组件中,如Oracle的Oracle Warehouse Builder (OWB)、SQL Server的Integration Services、Sybase的Data Integration Suite、BO的可扩展数据整合平台Data Integrator。
    上述各公司提供的ETL相关工具功能相近,在易用性、效率、价格等方面各有千秋,但就工具的二次开发、集成和开放性而言,与专业的数据集成平台,如Informatica公司的PowerCenter,相比还是存在一定的差距。
    2.3 OLAP技术
    联机分析处理(OLAP)是针对特定问题的联机数据访问和分析,通过对信息进行快速、稳定、一致和交互式的存取,对数据进行多层次、多阶段的分析处理,以获得高度归纳的分析结果。联机事务处理(OLTP)已不能满足终端用户对数据库查询分析的需要,SQL对大数据库进行的简单查询也不能满足用户分析的需求。用户的决策分析需要对关系数据库进行大量计算才能得到结果,而查询的结果并不能满足决策者提出的需求,由此出现了多维数据库和多维分析的概念。
    目前主流的OLAP产品有Oracle Express/Discoverer、SQL Server Analysis Services、DB2 OLAP Server、SAS OLAP Server等,这些产品都可以生成多维数据立方体,提供多维数据的快速分析,支持所有主流关系型数据库如DB2,Oracle,SQL Server,Sybase等,同时可读取关系数据库中细节数据,实现混合在线分析(HOLAP)或关系型在线分析(ROLAP)。并且,各厂商的OLAP Sever对自己的数据库产品的支持均好于其它数据库,各自的分析工具也都基于开放的OLE DB标准,可以访问支持OLE DB标准的数据立方体。
    BO公司和Sybase公司则分别提供了各自的OLAP分析工具OLAP Intelligence和Power Dimension,支持标准OLAP API,如OLEDB for OLAP,能够对Microsoft、IBM等OLAP数据进行划分、钻取等处理,兼容第三方报表和展现工具。Teradata尽管不提供独立的OLAP工具,但提供了相关技术,用于提升运行于Teradata数据库上的OLAP应用系统的性能。
    2.4 报表技术
    报表技术主要是将集成在数据模型里的数据,按照复杂的格式、指定行列统计项,计算形成的特殊表格。一般的简单报表可以使用通用的前台展现技术实现,而复杂的报表则需要使用特定的报表技术。主流的报表技术都可以灵活的制定各种报表模版库和指标库,并根据每个区块或单元格的需要引用指标,实现一系列复杂的符合要求的报表的自动生成。
    主流数据仓库厂商的报表工具中较为有影响包括IBM的Cognos ReportNet、BO的Crystal Reports、Oracle的Oracle Reports。IBM通过收购Cognos公司获得了完整的报表产品Cognos ReportNet,覆盖了各种报表需求,包括管理报表、商业报表、账单和发票等;BO公司提供了一个完整的企业报表解决方案Crystal Reports Server,支持通过Web快速便捷的创建、管理和交付报表;Oracle Reports工具提供了自由的数据格式方式,可以自动生成个性化字母或矩阵风格的布局,包括动态、数据驱动的图表;SQL Server的报表功能包含在Reporting Services (SSRS)中,包括处理组件、一整套可用于创建和管理报表的工具、在自定义应用程序中集成和扩展数据和报表处理的API。与上述产品相比,Sybase的InfoMaker、Teradata的BTEQ和SAS的Report Studio等报表产品在功能、性能、二次开发等方面都还存在着一定的差距。
    总的来说,这些产品在大部分通用软件领域相对国产软件都要优秀,但在有中国特色的报表领域内却是例外,在处理能力存在一定的不适应性。另外这些产品的数学模型都是基于SQL/OLAP理论设计的,在技术上也不能满足国内复杂报表的制作需求。
    2.5 数据挖掘技术
    当数据积累到一定数量时,某些潜在联系、分类、推导结果和待发现价值隐藏在其中,可以使用数据发掘工具帮助发现这些有价值的数据。数据挖掘就是从海量数据中,提取隐含在其中的、人们事先不知道的但又可能有用的信息和知识的过程。通过数据挖掘能找出数据库中隐藏的信息,实现用模型来拟合数据、探索型数据分析,数据驱动型的发现,演绎型学习等功能。
    目前,IBM公司的IBM Intelligent Miner支持典型数据集自动生成、关联发现、序列规律发现、概念性分类和可视化呈现,可以自动实现数据选择、数据转换、数据发掘和结果呈现这一整套数据发掘操作;Oracle公司提供的数据挖掘平台称为Oracle Data Miner,它提供了的一个图形用户界面,通过简单易用的向导来指导完成数据准备、数据挖掘、模型评估和模型评价过程,根据需要自动生成将数据挖掘步骤转换成一个集成的数据挖掘/BI应用程序所需的代码;SAS公司的SAS Enterprise Miner将数据挖掘过程简单流程化,支持关联、聚类、决策树、神经元网络和经典的统计回归技术;Teradata公司的挖掘工具称为Teradata Warehouse Miner,它通过将数据挖掘技术整合到数据仓库来简化数据挖掘流程,该工具还可实现将多家厂商的数据挖掘技术嵌入Teradata企业级数据仓库环境中运行;Microsoft数据挖掘平台不同于传统数据挖掘应用程序,它支持组织中数据的整个开发生命周期,允许第三方添加自定义算法以支持特定的挖掘需求,支持实时根据挖掘的数据集进行数据验证。对比于上述公司,Sybase和BO公司并没有推出专门的数据挖掘平台或工具。
    和前几项支撑技术相比,数据挖掘技术的专业性更强,与应用领域的特殊背景结合得更加紧密。上述产品除了在性能、通用性、数据展示、二次开发上有一定差异外,没有一个能够占据绝对技术和市场优势,反而是一些专门领域内的专业挖掘工具更具竞争性,如Fair Isaac公司占据了全球信用卡积分市场近7成的份额。
    3 市场分析
    国际权威市场分析机构IDC将数据仓库平台工具市场细分为数据仓库生成(Data Warehouse Generation)工具市场和数据仓库管理(Data Warehouse Management)工具市场两个部分,前者涵盖数据仓库的设计和ETL过程的各种工具,后者指数据仓库后台数据库的管理工具,如DBMS。根据IDC发布的《全球数据仓库平台工具2006年度供应商市场份额》分析报告,2006年该市场增长率为12.5%,规模达到57亿美元,其中数据仓库生成工具和数据仓库管理工具两个市场的比重分别为23.3%和76.7%,相对于数据仓库管理工具市场,数据仓库生成工具市场的增长进一步放缓。可以预见,整个数据仓库市场将进一步向拥有强大后台数据库系统的传统厂商倾斜。从供应商看,Oracle公司继续占据数据仓库管理领域的领先供应商地位,并且与其主要竞争者IBM之间的这种领先优势正逐渐扩大。Microsoft紧追IBM之后,与其之间的差距则在逐渐缩小。
    在国内,商业智能已经成为企业信息化中最重要的组成部分,而数据仓库相关技术在其中扮演着无可替代的重要角色。据ChinaBI统计,2007年中国大陆地区的BI市场份额约为20亿元人民币,同比2006年增长35%,其中BI产品许可证约为9亿元人民币,BI系统集成约为11亿元人民币。现有BI厂商包括产品提供商、集成商、分销商、服务商等有近500家,在未来几年内商业智能市场需求旺盛,市场规模增长迅速。从国内数据仓库实践看,根据ChinaBI评选的2007年中国十大数据仓库的初步结果,传统数据库厂商占据7个,分别是IBM 3个、Oracle 3个、SQL Server 1个,其余3个属于NCR/Teradata公司;从数据仓库规模来看,传统数据库厂商更占有巨大优势,总数据量为536.3T,Teradata则为54T。涉及的行业包括通信、邮政、税务、证券和保险等。
    在数据仓库市场快速发展的同时,市场竞争也日趋激烈,其中尤其以Oracle收购Hyperion、SAP收购BO、IBM收购Cognos具有代表意义。截至2007年底,混乱的市场已经基本明朗化,三个层次逐渐浮现出来。Oracle,IBM,Microsoft和SAP位居第一层次,能够提供全面的解决方案;第二层次是NCR Teradata和SAS等产品相对独立的供应商,可以提供解决方案中的部分应用;第三层次是只专注于单一领域的专业厂商,但其在并购的硝烟中日趋难以存活。

7. 数据挖掘中要避免的11大错误

数据挖掘中要避免的11大错误
1. 缺乏数据(Lack Data)
对于分类问题或预估问题来说,常常缺乏准确标注的案例。
例如:
欺诈侦测(Fraud Detection):在上百万的交易中,可能只有屈指可数的欺诈交易,还有很多的欺诈交易没有被正确标注出来,这就需要在建模前花费大量人力来修正。
信用评分(Credit Scoring):需要对潜在的高风险客户进行长期跟踪(比如两年),从而积累足够的评分样本。
2. 太关注训练(Focus on Training)
IDMer:就象体育训练中越来越注重实战训练,因为单纯的封闭式训练常常会训练时状态神勇,比赛时一塌糊涂。
实际上,只有样本外数据上的模型评分结果才真正有用!(否则的话,直接用参照表好了!)
例如:
癌症检测(Cancer detection):MD Anderson的医生和研究人员(1993)使用神经网络来进行癌症检测,惊奇地发现,训练时间越长(从几天延长至数周),对训练集的性能改善非常轻微,但在测试集上的性能却明显下降。
机器学习或计算机科学研究者常常试图让模型在已知数据上表现最优,这样做的结果通常会导致过度拟合(overfit)。
解决方法:
解决这个问题的典型方法是重抽样(Re-Sampling)。重抽样技术包括:bootstrap、cross-validation、jackknife、leave-one-out…等等。
3. 只依赖一项技术(Rely on One Technique)
IDMer:这个错误和第10种错误有相通之处,请同时参照其解决方法。没有对比也就没有所谓的好坏,辩证法的思想在此体现无遗。
“当小孩子手拿一把锤子时,整个世界看起来就是一枚钉子。”要想让工作尽善尽美,就需要一套完整的工具箱。
不要简单地信赖你用单个方法分析的结果,至少要和传统方法(比如线性回归或线性判别分析)做个比较。
研究结果:按照《神经网络》期刊的统计,在过去3年来,只有1/6的文章中做到了上述两点。也就是说,在独立于训练样本之外的测试集上进行了开集测试,并与其它广泛采用的方法进行了对比。
解决方法:
使用一系列好的工具和方法。(每种工具或方法可能最多带来5%~10%的改进)。
4. 提错了问题(Ask the Wrong Question)
IDMer:一般在分类算法中都会给出分类精度作为衡量模型好坏的标准,但在实际项目中我们却几乎不看这个指标。为什么?因为那不是我们关注的目标。
项目的目标:一定要锁定正确的目标
例如:
欺诈侦测(关注的是正例!)(Shannon实验室在国际长途电话上的分析):不要试图在一般的通话中把欺诈和非欺诈行为分类出来,重点应放在如何描述正常通话的特征,然后据此发现异常通话行为。
模型的目标:让计算机去做你希望它做的事
大多数研究人员会沉迷于模型的收敛性来尽量降低误差,这样让他们可以获得数学上的美感。但更应该让计算机做的事情应该是如何改善业务,而不是仅仅侧重模型计算上的精度。
5. 只靠数据来说话(Listen (only) to the Data)
IDMer:“让数据说话”没有错,关键是还要记得另一句话:兼听则明,偏听则暗!如果数据+工具就可以解决问题的话,还要人做什么呢?
投机取巧的数据:数据本身只能帮助分析人员找到什么是显著的结果,但它并不能告诉你结果是对还是错。
经过设计的实验:某些实验设计中掺杂了人为的成分,这样的实验结果也常常不可信。
6. 使用了未来的信息(Accept Leaks from the Future)
IDMer:看似不可能,却是实际中很容易犯的错误,特别是你面对成千上万个变量的时候。认真、仔细、有条理是数据挖掘人员的基本要求。
预报(Forecast)示例:预报芝加哥银行在某天的利率,使用神经网络建模,模型的准确率达到95%。但在模型中却使用了该天的利率作为输入变量。
金融业中的预报示例:使用3日的移动平均来预报,但却把移动平均的中点设在今天。
解决方法:
要仔细查看那些让结果表现得异常好的变量,这些变量有可能是不应该使用,或者不应该直接使用的。
给数据加上时间戳,避免被误用。
7. 抛弃了不该忽略的案例(Discount Pesky Cases)
IDMer:到底是“宁为鸡头,不为凤尾”,还是“大隐隐于市,小隐隐于野”?不同的人生态度可以有同样精彩的人生,不同的数据也可能蕴含同样重要的价值。
异常值可能会导致错误的结果(比如价格中的小数点标错了),但也可能是问题的答案(比如臭氧洞)。所以需要仔细检查这些异常。
研究中最让激动的话语不是“啊哈!”,而是“这就有点奇怪了……”
数据中的不一致性有可能会是解决问题的线索,深挖下去也许可以解决一个大的业务问题。
例如:
在直邮营销中,在对家庭地址的合并和清洗过程中发现的数据不一致,反而可能是新的营销机会。
解决方法:
可视化可以帮助你分析大量的假设是否成立。
8. 轻信预测(Extrapolate)
IDMer:依然是辩证法中的观点,事物都是不断发展变化的。
人们常常在经验不多的时候轻易得出一些结论。
即便发现了一些反例,人们也不太愿意放弃原先的想法。
维度咒语:在低维度上的直觉,放在高维度空间中,常常是毫无意义的。
解决方法:
进化论。没有正确的结论,只有越来越准确的结论。
9. 试图回答所有问题(Answer Every Inquiry)
IDMer:有点像我爬山时鼓励自己的一句话“我不知道什么时候能登上山峰,但我知道爬一步就离终点近一步。”
“不知道”是一种有意义的模型结果。
模型也许无法100%准确回答问题,但至少可以帮我们估计出现某种结果的可能性。
10. 随便地进行抽样(Sample Casually)
降低抽样水平。例如,MD直邮公司进行响应预测分析,但发现数据集中的不响应客户占比太高(总共一百万直邮客户,其中超过99%的人未对营销做出响应)。于是建模人员做了如下抽样:把所有响应者放入样本集,然后在所有不响应者中进行系统抽样,即每隔10人抽一个放入样本集,直到样本集达到10万人。但模型居然得出如下规则:凡是居住在Ketchikan、Wrangell和Ward Cove Alaska的人都会响应营销。这显然是有问题的结论。(问题就出在这种抽样方法上,因为原始数据集已经按照邮政编码排序,上面这三个地区中不响应者未能被抽取到样本集中,故此得出了这种结论)。
解决方法:“喝前摇一摇!”先打乱原始数据集中的顺序,从而保证抽样的随机性。
提高抽样水平。例如,在信用评分中,因为违约客户的占比一般都非常低,所以在建模时常常会人为调高违约客户的占比(比如把这些违约客户的权重提高5倍)。建模中发现,随着模型越来越复杂,判别违约客户的准确率也越来越高,但对正常客户的误判率也随之升高。(问题出在数据集的划分上。在把原始数据集划分为训练集和测试集时,原始数据集中违约客户的权重已经被提高过了)
解决方法:先进行数据集划分,然后再提高训练集中违约客户的权重。
11. 太相信最佳模型(Believe the Best Model)
IDMer:还是那句老话-“没有最好,只有更好!”
可解释性并不一定总是必要的。看起来并不完全正确或者可以解释的模型,有时也会有用。
“最佳”模型中使用的一些变量,会分散人们太多的注意力。(不可解释性有时也是一个优点)
一般来说,很多变量看起来彼此都很相似,而最佳模型的结构看上去也千差万别,无迹可循。但需注意的是,结构上相似并不意味着功能上也相似。
解决方法:把多个模型集装起来可能会带来更好更稳定的结果。
数据挖掘最重要的要素是分析人员的相关业务知识和思维模式。丰富的业务知识是设计有效的相关变量的必要条件,而分析人员的思维模式从另外一个方面也保障了设计变量的结构化和完整性。所以我们在掌握丰富的业务知识同时,如果能够按照正确的思维模式去思考问题,将会发现解决问题并不是很困难的。

数据挖掘中要避免的11大错误

8. 如何有效地进行数据挖掘和分析

大数据分析处理解决方案
方案阐述
         每天,中国网民通过人和人的互动,人和平台的互动,平台与平台的互动,实时生产海量数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。
数亿网民实时留下的痕迹,可以真实反映当下的世界。微观层面,我们可以看到个体们在想什么,在干什么,及时发现舆情的弱信号。宏观层面,我们可以看到当下的中国正在发生什么,将要发生什么,以及为什么?借此可以观察舆情的整体态势,洞若观火。
         原本分散、孤立的信息通过分析、挖掘具有了关联性,激发了智慧感知,感知用户真实的态度和需求,辅助政府在智慧城市,企业在品牌传播、产品口碑、营销分析等方面的工作。
所谓未雨绸缪,防患于未然,最好的舆情应对处置莫过于让舆情事件不发生。除了及时发现问题,大数据还可以帮我们预测未来。具体到舆情服务,舆情工作人员除了对舆情个案进行数据采集、数据分析之外,还可以通过大数据不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,通过对同类型舆情事件历史数据,及影响舆情演进变化的其他因素进行大数据分析,提炼出相关舆情的规律和特点。
         大数据时代的舆情管理不再局限于危机解决,而是梳理出危机可能产生的各种条件和因素,以及从负面信息转化成舆情事件的关键节点和衡量指标,增强我们对同类型舆情事件的认知和理解,帮助我们更加精准的预测未来。
用大数据引领创新管理。无论是政府的公共事务管理还是企业的管理决策都要用数据说话。政府部门在出台社会规范和政策时,采用大数据进行分析,可以避免个人意志带来的主观性、片面性和局限性,可以减少因缺少数据支撑而带来的偏差,降低决策风险。通过大数据挖掘和分析技术,可以有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。政府和企业应建立数据库资源的共享和开放利用机制,打破部门间的“信息孤岛”,加强互动反馈。通过搭建关联领域的数据库、舆情基础数据库等,充分整合外部互联网数据和用户自身的业务数据,通过数据的融合,进行多维数据的关联分析,进而完善决策流程,使数据驱动的社会决策与科学治理常态化,这是大数据时代舆情管理在服务上的延伸。
解决关键
         如何能够快速的找到所需信息,采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础,多瑞科舆情数据分析站的采集子系统和分析子系统可以归类热点话题列表、发贴数量、评论数量、作者个数、敏感话题列表自动摘要、自动关键词抽取、各类别趋势图表;在新闻类报表识别分析归类: 标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等;在论坛类报表识别分析归类: 帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等。
解决方案
           多瑞科舆情数据分析站系统拥有自建独立的大数据中心,服务器集中采集对新闻、论坛、微博等多种类型互联网数据进行7*24小时不间断实时采集,具备上千亿数据量的数据索引、挖掘分析和存储能力,支撑政府、企业、媒体、金融、公安等多行业用户的舆情分析云服务。因此多瑞科舆情数据分析站系统在这方面有着天然优势,也是解决信息数量和信息(有价值的)获取效率之间矛盾的唯一途径,系统利用各种数据挖掘技术将产生人工无法替代的效果,为市场调研工作节省巨大的人力经费开支。
实施收益
         多瑞科舆情数据分析站系统可通过对大数据实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。