超级电容器的特点

2024-05-20 07:00

1. 超级电容器的特点

  超级电容器特点
  (1)充电速度快,充电10秒~10分钟可达到其额定容量的95%以上;

  (2)循环使用寿命长,深度充放电循环使用次数可达1~50万次,没有“记忆效应”;

  (3)大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%;

  (4)功率密度高,可达300W/KG~5000W/KG,相当于电池的5~10倍;

  (5)产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源;

  (6)充放电线路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护;

  (7)超低温特性好,温度范围宽-40℃~+70℃;

  (8)检测方便,剩余电量可直接读出;

  (9)容量范围通常0.1F--1000F 。

超级电容器的特点

2. 超级电容器的工作原理

超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电 ,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。

3. 超级电容器的原理

超级电容器:介于传统电容器和充电电池之间的一种新型储能装置

超级电容器的原理

4. 超级电容的原理及分类有哪些?

超级电容是一种具有超级储电能力、可提供强大脉动功率的物理二次电源
超级电容如果按储能机理主要分为三类[1]:①由碳电极和电解液界面上电荷分离产生的双电层电容;②采用金属氧化物作为电极,在电极表面和体相发生氧化还原反应而产生可逆化学吸附的法拉第电容;③由导电聚合物作为电极而发生氧化还原反应的电容
双电层超级电容是靠极化电解液来储存电能的一种新型储能装置,结构如图1所示:由于双电层电容的充放电纯属于物理过程,其循环次数高,充电过程快,因此比较适合在电动车中应用
双电层超级电容是悬在电解质中的两个非活性多孔板,电压加载到两个板上
加在正极板上的电势吸引电解质中的负离子,负极板吸引正离子,从而在两电极的表面形成了一个双电层电容器
一个超级电容单元的电容量高达几法至数万法[2]由于这种结构采用特殊的工艺,使其等效电阻很低,电容量很大、内阻较小,使得超级电容具有很高的尖峰电流,因此超级电容具有很高的比功率,它的功率密度是电池的50~100倍,可达到10×103W/kg左右,此特点让超级电容非常适合应用在短时大功率的场合

5. 超级电容器的原理及应用


超级电容器的原理及应用

6. 超级电容工作原理

超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(ElectrochemicalCapacitors),双电层电容器(ElectricalDoule-LayerCapacitor)、黄金电容、法拉电容,是从上世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

电容分类
根据储能机理的不同可以分为一下两类:

双电层电容:是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙而产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中呈电中性,这便是双电层电容的充放电原理。

法拉第准电容:其理论模型是由Conway首先提出,是在电极表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH-、K+或Li+)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。

突出特点
(1)充电速度快,充电10秒~10分钟可达到其额定容量的95%以上;

(2)环使用寿命长,深度充放电循环使用次数可达1~50万次,没有“记忆效应”;

(3)大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%;

(4)功率密度高,可达300W/KG~5000W/KG,相当于电池的5~10倍;

(5)产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源;

(6)充放电线路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护;

(7)超低温特性好,温度范围宽-40℃~+70℃;

(8)检测方便,剩余电量可直接读出;

(9)容量范围通常0.1F--1000F。

7. 超级电容器的优点

超级电容器:介于传统电容器和充电电池之间的一种新型储能装置

超级电容器的优点

8. 超级电容器的作用有哪些?

对蓄电池充电的影响
车辆启动后,交流发电机整流后产生约15V的直流电压,这个电压除用于车辆灯光、空调、音响等用电系统供电外,主要用于对蓄电池进行充电。如果蓄电池上并联一组超级电容器,充电系统除给蓄电池充电外,还需对超级电容器同时进行充电,相当于增加了充电电源的负荷,相比不加超级电容器时充电的速度有所减慢。但考虑到车友加装超级电容器时都先行将电容器充电至与蓄电瓶等电压(正常情况约12.7V),车辆启动后电瓶因被充电其端电压增加到约13.7V,由于超级电容对电压的吸收能力很强,很短时间就可以将电压充至与电瓶电压一致,因此并联超级电容器后对充电时间的延长是很短的;同时,由于车辆的发电系统都有一定的储备容量,因此对充电设备的影响也很小。
超级电容器的特点是对电荷的吸收能力强,充电速度远大于铅酸蓄电池,它本可以在短时间内将电压充至发电机的输出电压(约15V),当车辆发动机关闭后再继续向蓄电池充电,从而使蓄电池更容易被充满,但是由于超级电容器与蓄电池处于并联状态,其电压始终被钳制在与蓄电池等电压,因此超级电容器的快速蓄电优势无法正常发挥。
超级电容器由于容量很大,对电压的波动可以起到很好的稳定作用,可以使交流发电机整流后的交流成分大大减少,因此可以改善车载音响系统的噪声和音质,这对音响系统处理能力较差的车辆是有立竿见影的效果的,但对音响系统处理能力较好的车辆效果不会很明显。但是,超级电容器对电压的稳定作用不利于对蓄电池充电:车用蓄电池都是铅酸蓄电池,铅酸蓄电池在充电时靠极板电解产生化学反应来储存电量,含有交流成分的直流电压由于包含高频正负脉冲,不仅可以加速极板的电解、增强充电能力,还可以消除硫化现象、减轻蓄电池的老化,因此并联超级电容器对铅酸蓄电池的充电是不利的。