微电子将来会如何发展

2024-05-10 21:47

1. 微电子将来会如何发展


微电子将来会如何发展

2. 微电子技术的主要发展方向

微电子技术:高校专业

3. 什么叫微电子学

微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。
        作为电子学的分支学科,它主要研究电子或例子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展书评直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。
        微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电路工艺和集成电路及系统的设计、测试等多方面的内容;设计了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试和加工、图论、化学等多个领域。
        微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向。信息技术发展的方向是多媒体(智能化)、网络化和个体化。要求系统获取和存储海量的多媒体信息、以极高速度精确可靠的处理和传输这些信息并及时地把有用信息显示出来或用于控制。所有这些都只能依赖于微电子技术的支撑才能成为现实。超高容量、超小型、超高速、超高频、超低功耗是信息技术无止境追求的目标,是微电子技术迅速发展的动力。
        微电子学渗透性强,其他学科结合产生出了一系列新的交叉学科。微机电系统、生物芯片就是这方面的代表,是近年来发展起来的具有广阔应用前景的新技术。

以下是作为大学专业的微电子学的一些情况:

业务培养目标: 

本专业培养掌握微电子学专业所必需的基础知识、基本理论和基本实验技能,能在微电子学及相关领域从事科研、教学、科技开发、工程技术、生产管理与行政管理等工作的高级专门人才。 

业务培养要求: 

本专业学生主要学习微电子学的基本理论和基本知识,受到科学实验与科学思维的基本训练,具有良好科学素养,掌握大规模集成电路及新型半导体器件的设计、制造及测试所必需的基本理论和方法,具有电路分析、工艺分析、器件性能分析和版图设计等的基本能力。 

毕业生应获得以下几方面的知识和能力: 

1.掌握数学、物理等方面的基本理论和基本知识; 

2.掌握固体物理学、电子学和VLSI设计与制造等方面的基本理论和基本知识,掌握集成电路和其它半导体器件的分析与设计方法,具有独立进行版图设计、器件性能分析和指导VLSI工艺流程的基本能力; 

3.了解相近专业的一般原理和知识; 

4.熟悉国家电子产业政策、国内外有关的知识产权及其它法律法规; 

5.了解VLSI和其它新型半导体器件的理论前沿、应用前景和最新发展动态,以及电子产业发展状况; 

6. 掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 

主干学科:电子科学与技术。 

主要课程:半导体物理及实验、半导体器件物理、集成电路设计原理、集成电路工艺原理、集成电路CAD、微电子学专业实验和集成电路工艺实习等。 

主要实践性教学环节:包括生产实习、毕业论文(设计)等,一般安排10~20周。 

主要专业实验:计算机辅助工艺模拟、计算机辅助版图设计、用准静态C一V法测量SiO2的界面态、四探针法测掺杂层的薄层电阻和MOS效应晶体管直流特性测量等。 

修业年限:四年。 

授予学位:理学或工学学士。 

相近专业:电子信息科学与技术、物理学、电子科学与技术。

什么叫微电子学

4. 微电子的发展趋势

国际微电子发展的趋势是:集成电路的特征尺寸将继续缩小,集成电路(IC)将发展为系统芯片(SOC)。微电子技术和其他学科相结合将产生很多新的学科生长点,与其它产业结合成为重大经济增长点。1999年中国集成电路的总消耗量折合人民币为436亿元,其中国产芯片的总量为83.8亿元人民币,占世界芯片产量的0.6%。虽然中国微电子产业的发展有了很大进步,但与发达国家相比还很落后,生产技术总体上还有2代左右的差距。国内集成电路需求的自给率很低,特别是技术含量高的产品,基本上依靠进口。 随着集成电路技术的发展,使整机、电路与元件、器件之间的明确界限被突跛,器件问题、电路问题和整机系统问题已经结合在一起,体现在一小块硅片上,这就形成了固体物理、器件工艺与电子学三者交叉的新技术学科一微电子学。随着集成电路技术的广泛渗透和延拓,它将是一个更为广泛的边缘性学科。一言以蔽之:微电子技术是信息社会的基石。实现信息化的网络及其关键部件不管是各种计算机还是通讯电子装备,它们的基础都是集成电胳。1946年2月年美国莫尔学院研制成功第一台电子数值积分器和计算器的时代,那是一个由18000个电子管组成,占地150平方米,重30吨的庞然大物。设想一下,这样的计算机能够进入办公室、车间和家庭吗?以至于当时有的科学家认为全世界只要4台这样的计算机就够了,可是现在全世界计算机包括微机在内就有上亿台。这只有在1948年贝尔实验室的科学家们发明了晶体管(微电子技术发展中第一个里程碑),特别是1958年硅平面工艺的发展和集成电路的发明(这可以认为是第二个里程碑),之后才可能出现今天这样的以集成电路技术为基础的电子信息技术和产业。正如最近美国工程技术界评出20世纪世界最伟大20项工程技术成就中第5项电子技术时谈到,“从真空管到半导体、集成电路已成为当代各行各业智能工作的基石。”这是由其本质所决定的:社会信息化的程度取决于对信息的掌握、处理能力和应用程度,而集成电路正是集信息处理、存储、传输于一个小小的芯片中。当前微电子技术发展已进入系统集成芯片(SOC-System On Chip)的时代.可将整个系统或子系统集成在一个硅芯片上。进一步发展,可以将各种物理的、化学的和生物的敏感器(执行信息获取功能)和执行器与信息处理系统集成在一起,从而完成从信息获取、处理、存储、传输到执行的系统功能,这是一个更广义上的系统集成芯片。可以认为这是微电子技术又一次革命性变革。它已如同细胞组成人体一样,成为现代工农业、国防装备和家庭耐用消费品的细胞。现在集成电路产业产值年增长率≥15%,在技术上,集成度以年增长率46%的速率持续发展,世界上还没有一个产业能以这样的速度持续发展。1990年日本以集成电路为基础的电子工业产值超过号称为第一产业的汽车工业而成为第-一大产业。2000年以集成电路为基础的电子信息产业成为世界第一大产业。集成电路的原料是地球上除氧以外含量最丰富的元素-硅,这样一块黑褐色小片,肉眼看上去.没有任何令人满意的地方,但经过人们的创新设计和一系列创新的工艺技术加工制造,成为集成电路芯片.将人类的智慧与创造固化在硅芯片上,因而是知识创新的载体,价值千金。这是典型的“点石成金”。改变着社会的生产方式和人们的生活方式,不仅成为现代产业和科学技术的基础,而且正在创造着代表信息时代的硅文化(siliconculture)。因此有科学家认为人类继石器、青铜器、铁器时代之后正进入硅石时代。集成电路产业对国民经济的战略作用首先表现在当代食物链关系上,现代经济发展的数据表明,GDP每增长100元,需要10元左右电子工业产值和1元-3元集成电路产值的支持。据美国半导体协会(SIA)预测,到2012年,集成电路全行业销售额将达到1万亿美元,它将支恃6万亿到8万亿美元的电子装备、30万亿美元的电子信息服务业和约50万亿美元GDP。21世纪经济是信息经济,目前发达国家信息产业产值已占国民经济总产值的40%-60%,国民经济总产值增长部分的65%与集成电路有关。因此,抓住了集成电路产业发展,就能促进国民经济的高速发展。上世纪90年代以来,美国经济持续高速发展,主要得益于IT产业的发展,而它的基础是微电子技术。实际上,不仅计算机更新换代,即使是家电的更新换代都基于微电子技术的进步。电子装备,包拆机械装置,其灵巧程度直接关系到它的高附加值和市场竞争力,都依赖于集成电路芯片的“智慧”程度和使用程度。在信息社会时代,产品以其信息含量的多少和处理信息能力的强弱,决定着其附加值的高低,从而决定它在国际市场分工中的地位。如果我们不发展集成电路产业,将使我们的IT行业只能停留在装配业水平上,挣的是“辛苦钱”,在国际分工中我们将只能处于低附加值的低端上。微电子产业的发展规模和科学技术水平已成为衡量一个国际综合实力的重要标志。几乎所有的传统产业只要与微电子技术结合,用集成电路芯片进行智能改造,就会使传统产业重新焕发青春。例如微机控制的数控机床已不再是传统的机床;又如汽车的电子化导致汽车工业的革命,目前先进的现代化汽车,其电子装备已占其总成本的70%。进入信息化社会,集成电路成为武器的一个组成单元,于是电子战、智能武器应运而生。雷达的精确定位和导航,战略导弹的减重增程,战术导弹的精确制导,巡航导弹的图形识别与匹配.以及各类卫星的有效载荷和寿命的提高等等,其核心技术都是微电子技术。目前,集成电路在整机中的应用,以计算机最大,通讯次之,第三位则是消费类电子。集成电路枝术是一种使其他所有工业黯然失色,又使其他工业得以繁荣发展的技术,其设计规格从1959年以来40多年间缩小为原来的140分之一,而晶体管的平均价格降低为原来的百万分之一。如果小汽车也按照此速度进步的活,那么现在小汽车的价格只需1美分。难怪日本人认为控制了超大规模集成电路技术,就控制了世界产业。”

5. 微电子技术的特点

微电子科学与工程专业简介及专业特色
本专业面向微电子行业,培养德、智、体、美全面发展,践行社会主义核心价值观,具有良好的职业道德和人文素养,掌握必备的数学和自然科学基础知识,掌握半导体物理、材料和器件等基础知识理论,具备微电子芯片制造、器件设计、封装与测试等专业核心技术能力,在微电子相关专业领域从事半导体工艺开发、半导体器件设计、集成电路封装与测试、集成电路版图设计、集成电路验证等工作,具有社会责任感、创新精神、国际视野和较强实践能力的高素质、应用型高级专门人才。

专业特色包括:

涵盖器件设计、工艺实现、封装与测试的微电子制备全流程的课程体系;
拥有微电子工艺全流程实践环境,学生在校内即可完成微电子器件工艺实践;


培养目标:

本专业培养德、智、体、美、劳全面发展,践行社会主义核心价值观,具有良好的职业道德和人文素养,掌握一定的数学和自然科学基础知识,掌握微电子科学与工程专业基础理论,具备微电子芯片制造、器件设计、封装与测试等专业核心技术能力,在微电子相关专业领域从事半导体工艺开发、半导体器件设计、集成电路封装与测试、集成电路版图设计、集成电路验证等工作,具有社会责任感、创新精神、国际视野和较强实践能力的高素质、应用型高级专门人才。

主要课程:

公共基础课:高等数学、线性代数、概率论与数理统计、复变函数与积分变换、大学物理、大学英语、大学英语口语、大学生就业指导、大学生心理健康教育、沟通与演讲、体育、创新创造与改变、思维创新与开发、创业者的成长之路、从非商业计划到商业计划以及一系列创新创业选修课程等,思想政治理论课程按国家规定开设。

专业基础课与专业课:专业导引与职业生涯规划、程序设计基础(C语言)I-双语、电路分析、模拟电路、数字电路、固体物理与半导体物理学、半导体器件物理、半导体制造工艺、半导体制造工艺实践、微纳制造技术与设备、微电子机械系统、光电子器件原理与应用、集成电路封装与测试、高级数字系统设计、超大规模集成电路设计、集成电路版图设计、微纳电子器件、新型半导体材料、半导体器件可靠性、微电子发展前沿技术等。

主要实践性教学环节:

(1)依托虚拟仿真平台,注重培养应用型人才。面向微电子行业,通过全流程的半导体工艺制备与测试虚拟仿真教学平台,培养学生掌握半导体芯片设计与工艺制备知识,培养掌握微电子芯片的设计、制造、封装与测试等专业技术能力。

(2)实验平台先进,专业设备齐全。拥有国内先进的半导体工艺与集成电路测试实验平台,使学生能够将微电子技术基础理论与实际生产相结合,通过氧化、淀积、光刻、刻蚀、掺杂等一整套半导体制造工艺与测试设备的实际操作训练,掌握半导体材料特性分析、微电子工艺制备、半导体器件设计、集成电路芯片封装与测试等实践能力。

微电子技术的特点

6. 微电子科学与工程 就业

主要研究半导体器件物理、功能电子材料、固体电子器件,超大规模集成电路(ULSI)的设计与制造技术、微机械电子系统以及计算机辅助设计制造技术等。
微电子科学与工程专业培养德、智、体全面发展,具有扎实的数理基础和电子技术基础理论,掌握新型微电子器件和集成电路分析、设计、制造的基本理论和方法;具备本专业良好的实验技能,能在微电子及相关领域从事科研、教学、科技开发、工程技术、生产管理与行政管理等工作的高级专门人才。
微电子科学与工程是物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科和超净、超纯、超精细加工技术基础上发展起来的一门新兴学科。微电子学是21世纪电子科学技术与信息科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础。

就业方向:
微电子科学与工程专业主要去向是报考微电子学、固体电子学、通信、计算机科学等学科的研究生,到集成电路制造厂家、集成电路设计中心以及通信和计算机等信息科学技术领域从事开发和研究工作。
发展前景
微电子科学与工程专业近年来也逐渐热火起来了,竞争力也很大。微电子专业一直是经久不衰的报考热门。微电子科学与工程专业主要研究新型电子器件及大规模集成电路的设计、制造,计算机辅助集成电路分析,各种电子器件的基础理论、新型结构、制造工艺和测试技术,以及新型集成器件的开发。微电子学近年来的发展,使计算机能力成倍数地增加,硬件成本大幅度降低,从而极大地推动了工业以及信息产业的发展。还有如激光器的研究应用、传感器的研究等的当代热点研究领域,都是微电子的范畴或者与之紧密相关。微电子技术的发展,是现代工业的基础和信息化工等。

7. 自学微电子,高手给指点!(本人还没入门呢,问了几个最基本的问题)

首先,我建议你好好看看中国微电子现状,目前的就业情况,和薪水水平。
无论是学术上还是工业上,中国的微电子都十分落后。总而言之,就是没有那个高校能搞出像样的研究,没有那个公司能生产像样的芯片。正因为如此,我们学微电子的就业情况并不乐观。
其次,微电子是一门大学科,主要分为“设计”、“工艺”、“材料”、“CAD”在中国,学工艺和学材料的是基本找不到工作的。学CAD的人很少,很多高校不设这个分支,学CAD的最后也大部分去做设计了。
先说一下工艺和材料,中国很少做这方么的公司,所以学工艺核材料的人最后的出路只有在高校里当老师搞研究了。
而设计-人数最为众多!主要分为“数字设计”和“模拟设计”由于目前计算机软件的高度发展,数字设计抽象的程度已经到了系统级了,而模块级,电路级,版图级都已经可以自动化了。我们学微电子的恰恰主要研究的就是电路级和版图级这个LEVEL,所以我们在“数字设计”这个岗位上竞争不过学通信的和学电子科学与技术的。“模拟设计”是我国的一个空白,我从来没有听说谁模拟设计设计的好的,科班出身的博士都不能设计个像样的模拟电路,其难度可想而知。
总之,学微电子的出路在哪,我目前还没有找到。说以你想自学之前,先要看看值不值得。

学工科的人在古时候被称为“匠”,如木匠,铁匠什么的。现在叫做“工程师”古时候一个“匠”最多能算个富农生活的水平,能到“地主”级别的都少,更别说“达官贵人”了,想什么鲁班什么的只是其中极品。现在的工程师也是如此,最顶尖的也就年薪百万,好点的年薪二三十万,一般的,也就八九万,我说的一般的是指名校毕业的研究生,绝大部分要么改行了,要么薪水略够吃用。
总之,我说的也不全面,你最好多了解状况。

自学微电子,高手给指点!(本人还没入门呢,问了几个最基本的问题)

8. 什么叫微电子产品?

微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和。 微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,第二次大战中、后期,由于军事需要对电子设备提出了不少具有根本意义的设想,并研究出一些有用的技术。1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路的主要工艺技术,是在50年代后半期硅平面晶体管技术和更早的金属真空涂膜学技术基础上发展起来的。19614年出现了磁双极型集成电路产品。1962年生产出晶体管——晶体管理逻辑电路和发射极藉合逻辑电路。MOS集成电路出现。由于MOS电路在高度集成方面的优点和集成电路对电子技术的影响,集成电路发展越来越快。70年代,微电子技术进入了以大规模集成电路为中心的新阶段。随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。70年代以来,集成电路利用计算机的设计有很大的进展。制版的计算机辅助设计、器件模拟、电路模拟、逻辑模拟、布局布线的计算辅助设计等程序,都先后研究成功,并发展成为包括校核、优化等算法在内的混合计算机辅助设计,乃至整套设备的计算机辅助设计系统。集成电路制造的计算机管理,也已开始实现。此外,与大规模集成和超大规模集成的高速发展相适应,有关的器件材料科学和技术、测试科学和计算机辅助测试、封装技术和超净室技术等都有重大的进展。 电子技术发展很快,在工艺技术上,微细加工技术,如电子束、离子束、X射线等复印技术和干法刻蚀技术日益完善,使生产上在到亚微米以至更高的光刻水平,集成电路的集成弃将超大型越每片106—107个元件,以至达到全图片上集成一个复杂的微电子系统。高质量的超薄氧化层、新的离子注入退火技术、高电导高熔点金属以其硅化物金属化和浅欧姆结等一系列工艺技术正获得进一步的发展。在微电子技术的设计和测试技术方面,随着集成度和集成系统复杂性的提高,冗余技术、容错技术,将在设计技术中得到广泛应用。